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Figure 1: Spectrum of the known charmonium states. Blue squares represent
the charmonium states that are established and well measured, red squares show
charmonium(-like) states which were discovered recently at the B-factories. The
empty rectangles indicate the prediction by the potential models [2]. The horizontal
line shows the open-charm threshold.

2 X(3872)

The X(3872) meson was discovered by Belle [3] in B± ⇥ X(3872)K± with X(3872)⇥
J/⇤⇥+⇥° in 2003, and quickly confirmed by the BaBar, CDF and D0 experiments [3].
Its mass is known very precisely, 3871.4± 0.6 MeV/c2, and its width is less than 2.3

MeV at 90% confidence level. This state is very close to the D§0D
0

threshold which
is at (3871.8 ± 0.4) MeV/c2. This resonance was also observed in the final state
J/⇤� [4], which implies that its C quantum number is equal to +1. The study of the
⇥+⇥° invariant mass distribution by Belle and an angular analysis by CDF shows that
JPC = 1++ is favored (although 2++ is still possible) [4]. It has also to be noted that
a search for a charged partner was performed by BaBar, but no signal was found [4].

The BaBar experiment has recently performed an update of the study of the
decays of B+ ⇥ X(3872)K+ and B0 ⇥ X(3872)K0 with X(3872) ⇥ J/⇤⇥+⇥° [5],
using 413 fb°1 of data. The invariant masses of the J/⇤⇥+⇥° combination are shown
in Fig. 2 for the two channels. A clear signal is observed in the charged channel,
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Why ccbar potential？
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Figure 2
Schematic representations of molecular states, diquark-diantiquark tetraquark mesons, and quark-antiquark-
gluon hybrids.

identify unambiguously a light multiquark state in an environment of many broad and often
overlapping conventional states. The charmonium spectrum is better defined, so new types of states
can potentially be more easily delineated from conventional charmonium states. The observation
of the X(3872), the first of the XYZ particles to be seen, allowed researchers to hope that a
multiquark state had definitively been observed.

Two generic types of multiquark states have been described in the literature. The first is a
molecular state, sometimes referred to as a deuson (41), that comprises two charmed mesons
bound together to form a molecule. These states are by nature loosely bound. Molecular states
bind through two mechanisms: quark/color exchange interactions at short distances and pion
exchange at large distance (5, 41, 42) (see Figure 2), although pion exchange is expected to
dominate (5). Molecular states are generally not isospin eigenstates, resulting in distinctive decay
patterns. Because the mesons inside the molecule are weakly bound, they tend to decay as if they
are free. The details of this process are reviewed by Swanson (5).

The second type of multiquark state is a tightly bound four-quark state, known as a tetraquark,
which is predicted to have properties different from those of a molecular state. In the model of
Maiani et al. (43) the tetraquark is described as a diquark-diantiquark structure in which the quarks
group into color-triplet scalar and vector clusters and in which the interactions are dominated by
a simple spin-spin interaction (see Figure 2). Here, strong decays are expected to proceed via
rearrangement processes, followed by dissociation, that give rise to (for example) decays such
as X → ρJ/ψ → ππJ/ψ or X → DD̄∗ → DD̄γ . A prediction that distinguishes multiquark
states containing a cc̄ pair from conventional charmonia is the possible existence of multiplets that
include members with nonzero charge (e.g., [cuc̄d̄]), strangeness (e.g., [cd cs]), or both (e.g., [cucs])
(44).

2.3. Charmonium Hybrids
Hybrid mesons are states characterized by an excited gluonic degree of freedom (see Figure 2),
which have been described by many different models and calculational schemes (45). A compelling
description, supported by lattice QCD (46, 47), views the quarks as moving in adiabatic potentials
produced by gluons by analogy to the atomic nuclei in molecules moving in the adiabatic potentials
produced by electrons. The lowest adiabatic surface leads to the conventional quarkonium spec-
trum, whereas the excited adiabatic surfaces result from putting the gluons into more complicated
color configurations. In the flux-tube model (48), the lowest excited adiabatic surface corresponds
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BaBar Collaboration S. Godfrey and S. L. Olsen, 
Ann. Rev. Nucl. Part. Sci. 58, 51 (2008)

✦ Exotic XYZ charmonium-like mesons

The XYZ mesons are expected to be 
good candidates for non-standard 
quarkonium mesons

“Standard” states can be 
defined in potential models

“Exotic” = “Non-standard”?



Why ccbar potential？
✦ qqbar interquark potential in quark models

Vcc̄ = �4
3

�s

r
+ ⌅r +

32⇤�s

9m2
q

⇥(r)Sq · Sq̄ +
1

m2
q

��
2�s

r3
� b

2r

�
L · S +

4�s

r3
T

�

Cornell potential spin-dependent potential 

• Spin-spin, tensor and spin-orbit terms appear as corrections in the 1/mq expansion.

• Functional forms of the spin-dependent terms are determined by one-gluon exchange.

                 → Properties of higher charmonium states predicated 
                   in potential models may suffer from large uncertainties.

S. Godfrey and N. Isgur, PRD 32, 189 (1985). 
T. Barnes, S. Godfrey and E. S. Swanson, PRD 72, 054026 (2005)

A reliable charmonium potential directly derived 
from first principles QCD is very important.



Why ccbar potential？
✦ Static interquark potential from Wilson loop

Lattice QCD simulations

! O(1/m2
q) spin-dependent corrections
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Koma et al., NPB769 (2007) 79
Koma et al., PRL97 (2006) 122003

Spin-independent potential spin-spin potential 
G. S. Bali, Phys. Rept. 343, 1 (2001).

•  The static potential have been precisely calculated by Wilson loop from lattice QCD.

•  Relativistic corrections are classified in powers of 1/mq within framework of pNRQCD.

 

→ spin-spin potential induced by 1/mq2 correction exhibits short range attraction.
     cf. short range repulsion is required in phenomenology.

short range attraction

Cornell potential

N. Brambilla et al., Rev. Mod. Phys. 77, 1423 (2005).

15

Results

! Static potential and force
V (0)(r) = −

1

T
ln〈P (0)P (r)∗〉 + O(e−(E1−E0)T)

V (0)′
(r) = {V0(r) − V0(r − a)}/a
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V (0)(r) = −
c

r
+ σr + µ ⇒ c = 0.297(1), σa2 = 0.0468(2)

Y. Koma (Numazu College of Technology)



How to calculate ccbar potential？

1. Equal-time BS wavefunction

2. Schrödinger equation with non-local potential 

3. Velocity expansion 

��(r) =
�

x

�0|q(x)�q(x + r)|qq̄;JPC⇥

�

x,x�,y�

⇤0|q̄(x, t)�q(x + r, t) (q̄(x⇤, tsrc)�q(y⇤, tsrc))
† |0⌅

=
�

n

An⇤0|q̄(x)�q(x + r)|n⌅e�M�
n (t�tsrc)

t⇥t0���⇥ A0��(r)e�M�
0 (t�tsrc)

��
2

2µ
��(r) +

�
dr�U(r, r�)��(r�) = E���(r)

time

x

x+ r

S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123, 89(2010).
Y. Ikeda and H. Iida, Prog.Theor.Phys.Suppl. 186, 228 (2010) 

U(r�, r) = {V (r) + VS(r)SQ · SQ + VT(r)S12 + VLS(r)L · S + O(⇥2)}�(r� � r)



How to calculate ccbar potential？
5. Projection to “S-wave”  φΓ(r) → φΓ(r; A1+)

6. Linear combination

 
The quark kinetic mass mq is essentially involved in the definition of the potentials.
Under a simple, but reasonable assumption of

�
�⇥

2

mq
+ V (r) + Sq · SqVS(r)

�
��(r) = E���(r)

lim
r��

VS(r) = 0

2

BS wavefunction [11, 12]. After an appropriate projec-
tion with respect to discrete rotation, we can get the
BS wave function projected in the A+

1 representation,
⇤�(r) ⇧ ⇤�(A

+
1 ; r), which corresponds to the S-wave in

continuum theory at low energy. Details of the A+
1 pro-

jection are described in Ref. [13]. We simply denote the
A+

1 projected BS wave function by ⇤�(r) hereafter.
The interquark potential V� can be determined from

the projected BS wave function ⇤�(r) through the sta-
tionary Schrödinger equation [18]:

V�(r)� E� =
1

mq

⌥2⇤�(r)

⇤�(r)
, (4)

where mq is the quark kinetic mass and ⇤2 is defined
by the discrete Laplacian with nearest-neighbor points.
The energy eigenvalue E� of the stationary Schrödinger
equation is supposed to be M��2mq. Here we note that
this definition of the potential itself requires the informa-
tion of the quark mass mq, while the rest mass of heavy
quarkonium state M� can be determined by the standard
hadron spectroscopy.

The central potential calculated from 1S quarkonium
states can be decomposed into the spin-independent and
-dependent parts: V�(r) = Vqq(r) + Vspin(r)Sq · Sq̄,
where Vqq̄ represents the spin-independent central po-
tential while Vspin corresponds to the spin-spin potential.
For the PS and V channels, the spin operator Sq ·Sq̄ can
be easily replaced by expectation values �3/4 and 1/4,
respectively. Therefore the potential Vqq̄ can be evalu-
ated by a linear combination of potentials calculated from
the PS and V channels as Vqq(r) =

1
4 (VPS(r) + 3VV(r)).

As we previously pointed out, the quark kinetic mass
mq is a key ingredient in order to calculate the qq po-
tential defined in Eq. (4) from the BS wave function.
How can we determine the quark mass? In the initial
attempt [8], mq was approximately evaluated by a half
of the vector quarkonium mass MV /2. However such
an approximate treatment loses a proper quark-mass de-
pendence of the qq potential, which guarantees that the
potential defined here is smoothly connected to the static
qq potential from Wilson loops in the mq ⇧ ⌃ limit.

We may alternatively determine the quark mass from
the gauge dependent pole mass, which can be measured
by the quark two-point function in the Landau gauge.
We instead propose a novel method which is applicable
even in the Coulomb gauge as follows. We first consider
the spin-dependent potential, which is given by

Vspin(r)��Ehyp =
1

mq

�
⌥2⇤V(r)

⇤V(r)
� ⌥2⇤PS(r)

⇤PS(r)

⇥
, (5)

where �Ehyp denotes a di⇥erence between energy eigen-
values of the PS and V channels. Indeed, the value of
�Ehyp is nothing but hyperfine mass splittingMV�MPS.

Suppose that limr⇥⇤ Vspin(r) = 0, we can estimate the

TABLE I: Results of the quark mass mq, the Cornell param-
eters A, ⇥ and the ratio A/⇥ in this approach. Their extrap-
olated values to the mq � ⇥ limit are also compared with
the Wilson loop results taken from Ref. [7].

� amq A a2⇥ A/a2⇥
0.11456 0.493(18) 0.663(23) 0.0477(28) 13.9(7)
0.10190 0.833(31) 0.470(16) 0.0435(25) 10.8(6)
0.09495 1.006(41) 0.430(16) 0.0426(27) 10.1(6)
0.08333 1.288(30) 0.381(10) 0.0435(18) 8.8(4)
0.07490 1.484(22) 0.360(7) 0.0443(13) 8.1(3)
0.06667 1.720(18) 0.341(6) 0.0442(11) 7.7(3)

— ⇥ 0.236(39) 0.0465(34) 6.1(1.1)
Wilson loop 0.281(5) 0.0466(2) 6.03(11)

quark kinetic mass mq through the following formula:

mq = lim
r⇥⇤

1

�Ehyp

�
⌥2⇤PS(r)

⇤PS(r)
� ⌥2⇤V(r)

⇤V(r)

⇥
, (6)

where �Ehyp = MV � MPS is measured by the stan-
dard hadron spectroscopy. As a result, one can self-
consistently determine both the spin-independent and -
dependent qq potentials, and also the quark kinetic mass
within a single set of four-point correlation functions.
To verify our new proposal, we have performed

quenched lattice QCD simulations on a lattice L3 ⇤ T =
323 ⇤ 48 with the standard single-plaquette gauge action
at � = 6/g2 = 6.0, which corresponds to a lattice cuto⇥
of a�1 ⌅ 2.1 GeV (a ⌅ 0.093fm). The spatial lattice
size corresponds to La ⌅ 3 fm. We fix the lattice to
Coulomb gauge. The heavy-quark propagators are com-
puted using the relativistic heavy quark (RHQ) action
with relevant one-loop coe⌅cients of the RHQ [14, 15].
The RHQ action utilized here is a variant of the Fermilab
approach [16] and can remove large discretization errors
introduced by large quark mass.
To examine the infinitely heavy quark limit, we adopt

the six values of the hopping parameter ⇥, which cover
the range of the spin-averaged mass of 1S quarkonium
states Mave = 1

4 (MPS + 3MV) = 1.97 - 5.86 GeV. We
calculate quark propagators with a wall source which are
located at tsrc/a = 4. Dirichlet boundary conditions are
imposed for time direction. Our results are analyzed on
150 configurations for every hopping parameters. In this
letter, we use only the on-axis data of the BS wave func-
tion since the o⇥-axis data may su⇥er more from the ro-
tational symmetry breaking e⇥ect.
First of all, in Fig. 1, we plot a di⇥erence of ratios

of ⌥2⇤V/⇤V and ⌥2⇤PS/⇤PS as a function of spatial dis-
tance r at ⇥ = 0.10190, which is close to the charm quark
mass [17], as a typical example. The ratios of ⌥2⇤�/⇤�

are evaluated by a weighted average of data points in the
range of (t� tsrc)/a = 21 - 23. At a glance, the value of
⌥2⇤V/⇤V�⌥2⇤PS/⇤PS certainly reaches a non-zero con-
stant value at large distances, which turns out to be the

mq = lim
r��

�1
�Ehyp

�
�2�V(r)
�V(r)

� �
2�PS(r)
�PS(r)

�

V (r) = Eave +
1

mq

�
1
4
�2�PS(r)
�PS(r)

+
3
4
�2�V(r)
�V(r)

�

VS(r) = Ehyp +
1

mq

�
��

2�PS(r)
�PS(r)

+
�2�V(r)
�V(r)

�

T. Kawanai and S. Sasaki, PRL. 107, 091601 (2011).

S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123 (2010) 89.
Y. Ikeda and H. Iida, arXiv:1102.2097 [hep-lat].



1. Quenched lattice QCD simulation

2. Nf =2+1 dynamical QCD simulation



Lattice Set up

▶ Quenched QCD (No dynamical quarks)

▶ Lattice size : L3 × T = 323 × 48 (~3fm3)

▶ plaquette gauge action  β=6.0  (a=0.093 fm, a-1=2.1GeV)
+ RHQ action with tad-pole improved one-loop PT coefficients

▶ 6 hopping parameters :  0.06667 ≤ κQ ≤ 0.11456
                                     1.87  GeV ≤ mpseudo  ≤ 5.83 GeV                       

▶ Statistics : 150 configs

▶ Wall source 

▶  Coulomb gauge fixing 

q

q
3fm

0.093fm

time

x

x+ r

 Y. Kayaba et al. [CP-PACS Collaboration], JHEP 0702, 019 (2007).



Pseudo scalar JP= 0- Vector JP= 1-
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▶BS wave functions vanish at  r ~ 1fm 
▶Size of wave function with heavier quark mass become smaller.
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Consistent with the Wilson loops in the mq → ∞ limit
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Cornell parameterization

• Quark mass dependence

c c
V(r)

A/σ

A

σ

1/mq



q

qq

q

2.2fm

0.068fm0.093fm

q

q

0.047fm

• Finite lattice spacing effects

-2

-1.5

-1

-0.5

 0

 0.5

 0  0.2  0.4  0.6  0.8  1

V(
r)  

- E
av

e  
[G

eV
]

r  [fm]

a = 0.0469fm
a = 0.0677fm
a = 0.0931fm

-2

-1.5

-1

-0.5

 0

 0.5

 0  0.2  0.4  0.6  0.8  1

V(
r)  

- E
av

e  
[G

eV
]

r  [fm]

L = 3.0fm
L = 2.2fm

• Volume dependence

q

q

q

q

2.2fm
3.0fm No strong volume dependence

Good scaling behavior
 is observed 

Small Large

Coarse FineMedium

spin-independent qqbar potential 



1. Quenched lattice QCD simulation

2. Nf =2+1 dynamical QCD simulation



Lattice Set up

▶ 2+1 flavor dynamical gauge configurations 
generated by PACS-CS collaboration.

▶ Lattice size : L3 × T = 323 × 64 (~3fm3)

▶ Iwasaki gauge action β=1.9  (a≈0.091 fm, a-1≈2.3GeV)
+ RHQ action with partially non-perturbative RHQ parameters.

▶ Light quark mass : mπ = 156(7) MeV, mK = 553(2)MeV
Charm quark mass : mave(1S) =3.069(2) GeV, mhyp(1S)=111(2) MeV

▶ Statistics : 198 configs

▶ Wall source 

▶  Coulomb gauge fixing 

q

q
3fm

0.091fm

time

x

x+ r



spin-independent ccbar potential 
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▶ The charmonium potential obtained 
from the BS wave function resembles 
one used in the NRp model.

This work NRp model Static
A 0.813(22) 0.7281 0.403(24)

√σ [GeV] 0.394(7) 0.3775 0.462(4)

mq [GeV] 1.74(7) 1.4794 ∞

Non-relativistic potential (NRp) model
T.Barnes, S. Godfrey, E.S. Swanson, PRD72 (2005) 054026

▶ String breaking is not observed 

T. Kawanai and S. Sasaki, arXiv:1110.0888  

c c
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spin-spin ccbar potential 
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FIG. 3: Spin-spin charmonium potential calculated from the
BS wave function. The dashed, dotted and dash-dotted curve
corresponds to the fitting result for Yukawa, exponential,
Gausian type function, respectively. The all shaded bands
show the statistical fitting uncertainty calculated by the jack-
knife method. For comparison, the phenomenological poten-
tial employed in a NRp model [4] is also included as solid
curve.

TABLE III: Fitting function to spin-spin charmonium poten-
tial and resulting each parameters.

functional form � ⇥ ⇤2/ndf
Yukawa-type 0.321(45) 1.07(16) GeV 0.04
Exponential-type 0.78(10) GeV 1.95(14) GeV 0.11
Gaussian-type 0.258(14) GeV 0.840(54) GeV2 1.03

charmonium potential is also important to introduce the
hyperfine splitting for higher-mass charmonium states
with the non-zero angular momentum, such as small mass
di�erence between the spin averaged ⇧c state and hc

state. The point like interaction ⇥ ⇤(r) induced by one
gluon exchange according to the Fermi-Breit formula can-
not give the mass splitting to the non-zero angular mo-
mentum states whose wave function vanishes at the ori-
gin. In phenomenological potential model, actually non-
point like interaction induced by an O(v2) expansion is
employed [4]. Spin-spin charmonium from BS wave func-
tion satisfies the qualitative conditions requested from
the structure of the charmonium spectroscopy.

In contrast of the case of the spin-independent poten-
tial, the spin-spin potential obtained from lattice QCD is
slightly di�erent from the phenomenological one. As we
mentioned before, the phenomenological potential is ba-
sically determined by perturbative one-gluon exchange.
In this sense, the realistic spin-dependent potential from
first principles of QCD can provide new and valuable in-
formation to the NRp models. An improvement of the
spin-dependent potential would modify theoretical pre-
dictions about the higher-mass charmonium states.

To examine the appropriate functional form for the
spin-spin potential, we have tried three types of func-

tional forms:

VS(r) =

�
⇤

⇥

� exp(�⇥r)/r : Yukawa form
� exp(�⇥r) : Exponential form
� exp(�⇥r2) : Gaussian form

(8)

We then determine which functional form can give a
reasonable fit over the range of r/a from 2 to 10. All
fitting results are summarize in Table III. The long-
range screening observed in the spin-spin potential is
more easily accommodated by the Yukawa form or the
exponential-type form than the Gaussian form that is of-
ten employed in the NRp model. Although the Yukawa
form provides the smaller ⇧2/ndf than the exponential
form, it is mainly caused by the short-range behav-
ior of the spin-spin potential. As we mentioned previ-
ously, the short-range part in the potential su�ers much
from the discretization error, which can be monitored by
signs of the rotational breaking that appears seriously
at short distances. In this sense, both the Yukawa and
exponential-type forms equally well describe the data
points of the spin-spin charmonium potential obtained
from lattice QCD.

In this letter, we present both spin-independent and
-dependent part of the interquark potential at the charm
quark mass from the BS wave function in dynamical lat-
tice QCD simulations. The spin-independent charmo-
nium potential obtained from the BS wave function has
the good agreement with the one used in the phenomeno-
logical model. On the other hand, though the spin-spin
potential exhibits the short range repulsive interaction
which is phenomenologically required by the charmonium
spectroscopy, its shape is slightly di�erent from the phe-
nomenological one. Therefore spin-dependent potential
from lattice QCD can provide new information to the
NRp models.

We will next determine the every terms of charmo-
nium potential including the tensor and spin-orbit forces
by applying this BS amplitude method to P -wave and
D-wave charmonium state with respect to the structure
of the spinor such as S12⌅�(r). To obtained the detailed
information of the short range behavior of the charmo-
nium potential, a important step is taking the contin-
uum limit or improvement of the derivative operator to
remove the discretization error at short distances. Once
the every terms of the realistic charmonium potential is
determined, we can make a more precise prediction to
the spectroscopy of higher-mass charmonium states in
the same framework as quark potential model.

We would like to thank H. Iida and Y. Ikeda for fruitful
discussions. T.K. is supported by Grant-in-Aid for the
Japan Society for Promotion of Science (JSPS) Research
Fellows (No. 22-7653). S.S. is supported by the JSPS
Grant-in-Aids for Scientific Research (C) (No. 19540265
and No. 23540284) and Scientific Research on Innovative
Areas (No. 21105504).

▶  Short range, but non-point like, repulsive interaction
▶  A difference appears in the spin-spin potential

 Fitting function α β χ/ d.o.f
Yukawa 0.297(12) 0.982(47) GeV 0.89

exponential 0.866(29) GeV 2.067(37) GeV 0.45
Gaussian 0.309(7) GeV 1.069(17) GeV2 12.40

T. Kawanai and S. Sasaki, arXiv:1110.0888  

Note: m(0-) < m(1-)
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charmonium mass spectrum 
below open-charm threshold

 Low-lying charmonium masses obtained from the quark potential model with 
lattice inputs are in good agreement with the experimental measurements.



Summary 

✦ We have derived both the spin-independent and -dependent part of the central 
qqbar interquark potential from the BS wave function in Quenched QCD simulation 
and 2+1 flavor dynamical lattice QCD simulation with almost physical quark 
masses.

✓ spin-independent qqbar potential from BS wave function smoothly approaches 
the static qqbar potential from Wilson loop.

✓ The spin-independent charmonium potential obtained from the BS wave 
function resembles the one used in the NRp model. 

✓  Spin-spin potential from lattice QCD shows the repulsive interaction.

✓ The resulting charmonium potential can reproduce experimental spectroscopy.

✦ Future perspective 

✓ Other spin-dependent potential: tensor and  LS force.

✓ To extend the bottomonium (Now under way)



Thank you for your attention.
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Figure 5.6: The energy-levels (dashed black lines) and corresponding reduced wave functions u(r) (solid
blue lines) of spin-averaged 1S-charmonium states, obtained by solving the Schrödinger equation with
the lattice inputs. Only the central values are shown for both these quantities. A black horizontal line
indicates the open-charm threshold. The spin-independent charmonium potential obtained from lattice
QCD and its fit result with the Cornell parameterization is also included in the same plot as red circle
points and a pink shaded band, respectively.

In the BS amplitude method, a value of the di↵erence V0 � Eave, where Eave is spin-averaged eigen-
energy of 1S-charmonium state, is directly obtained from the constant term in spin-independent char-
monium potential. The value of Eave, of course, is calculated through Eave = Mave � 2mQ. However a
statistical uncertainty of mQ is somewhat large compared to a absolute value of V0 � Eave: here these
are Eave = 0.508(69) GeV, mQ = 1.789(34) GeV and V0 � Eave = �0.146(13) GeV. Therefore we solve
the following Schrödinger equation which is shifted by a constant energy �Eave:

n

� r2

m
Q

+ V 0(r) + SQ · SQ̄VS(r)
o

�SLJ(r) = E0
SLJ�SLJ(r) (5.3)

V 0(r) = V (r)� Eave (5.4)

E0
SLJ = ESLJ � Eave (5.5)

where S, L and J are quantum numbers specifying the total spin, the total orbital angular momentum
and the total angular momentum, respectively. Desired charmonium masses are obtained by merely
adding E0

SLJ to the spin-averaged mass Mave which is obtained from the standard lattice spectroscopy
with high accuracy: Mave + E0

SLJ = 2mq + ESLJ .

wave function and mass spectrum

In Fig 5.6, we first show the energy-level spacings and corresponding reduced wave functions up to the
4th excited state for the spin-averaged S-wave charmonium states where an expectation value of the spin
operator is supposed to be hSQ · SQ̄i = 0, together with the spin-independent charmonium potential
fitted by the Cornell parameters. The data points of the charmonium potential obtained from lattice
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Figure 5.7: Mass spectrum of charmonium states below the open-charm threshold. The vertical scale is
in units of MeV. Labels of 2S+1[L]J (JPC) are displayed in lower (upper) horizontal axis. Red solid lines
indicate experimental values of well established charmonium states, while blue square symbols represent
results of the standard lattice spectroscopy. Rectangular boxes indicate predictions from the NRp models
with theoretical inputs based on lattice QCD. Empty and shaded ones correspond to the case of the Cornell
and Turin parameterizations used for the spin-independent charmonium potential, respectively. A black
horizontal line shows the open-charm threshold. A symbol of 3PJ denotes the spin-weighted average of
spin-triplet 3PJ states as M�

cJ

= (M�
c1

+ 3M�
c2

+ 5M�
c2

)/9.

the spin-independent charmonium potential is Mave(2S) � Mave(2S) = 608(13) MeV in the case of the
Cornell potential, of which value agrees well with the experimental value of 606(1) MeV [131]. Note here
that we simply ignore the 2S � 1D mixing stemming from the tensor force.

The spin-spin potential gives a mass splitting in the hyperfine multiplets. As shown in the second
and third panels from the left in Fig. 5.8, the theoretical estimate for the hyperfine splitting energies
of MJ/ � M⌘

c

= 123(10) MeV in 1S-states and M 0(2S) � M⌘
c

(2S) = 47(1) MeV in 2S-states are also
consistent with the experimental value of 116(1) MeV and 47(1) MeV, respectively. For the mass splitting
in 1S-states, we also calculate it by the usual lattice spectroscopy, and again both results agree with each
other. The reason why the statistical error on the mass splitting in 2S-states are smaller than that of
1S-states is that statistical uncertainties of charmonium potentials are relatively large at short distances,
and 1S-states are rather more influenced by the short range part of the charmonium potential than 2S-
states (See Fig. 5.6). For the same reason, higher S-wave states is relatively insensitive to the choice of
the functional form for the charmonium potential.

On the other hand, our theoretical estimate of P -wave hyperfine mass splitting M�
cJ

�Mh
c

deviates
from the experimental value, that is zero within error [125, 126]. This inconsistency can be exposed since
the statistical error of M�

cJ

�Mh
c

is significantly reduced thanks to strong correlation between hc and
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Figure 5.8: Mass splittings of states lying below the open charm threshold in units of MeV, compared to
the physical mass splitting. From left to right four panels show the mass splitting Mave(2S)�Mave(1S)
between the spin-averaged 1S- and 2S-states, and the hyperfine mass splittings MJ/ �M⌘

c

between 1S-
states, M (2S)�M⌘

c

(2S) between 2S-states andM�
cJ

�Mh
c

between 1P -states. In each plot, ablack cross,
red circle and blue square symbol indicate the experimental value and theoretical values obtained from
the LNRp model with the Cornell and Turin potentials. Dashed lines represent the center of experimental
values. Only for the hyperfine mass splitting between 1S-states, the results of the lattice spectroscopy is
shown as a gray shaded band. The statistical errors of all lattice results are examined by the jackknife
method.

spin-weighted average of �cJ states. So far the spin-spin charmonium potential fails to describe the exper-
imental data accurately. As we mentioned in the previous section, finite-range spin-spin potential gives a
nonzero hyperfine mass splitting into P -states, while zero hyperfine splitting measured in experiments can
be easily reproduced by the point-like potential widely adopted phenomenological quark potential model.
One possibility to resolve this issue is that the spin-spin potential may have a slight attractive region,
which can compensate a repulsion at short distances. As we will discuss later, the spin-spin potential
determined from Ds meson systems indeed shows such an attraction at intermediate distances. However,
the current setup is not enough to verify the very detailed structure of the charmonium potential.

Basically our theoretical calculations for charmonium states below the open-charm threshold are in
good agreement with the experimental measurements. The point we wish to emphasize here is that our
novel approach has no free parameters in solving the Schrodinger equation opposed to the NRp model. All
of them are fixed by lattice QCD. Only experimental values of 1S-charmonium mass is used to determine
the charm quark parameters defined in the RHQ action on the lattice. In this sense the new approach
proposed here is distinctly di↵erent from existing phenomenological quark potential models.

5.3.2 Higher charmonium

Next we attempt to apply the LNRp model to states above the open-charm threshold. Fig 5.9 shows
the mass spectrum of charmonium states below 4.5 GeV, compared to the well established charmonium
states and newly discovered charmonium-like mesons from experiments. The calculation for the higher
charmonium states, which are insensitive to details of the short range part of the charmonium potential,
simply uses the Cornell potential of which parameters are all fixed by lattice QCD. The exponential form
is again adopted for the spin-spin interaction. The theoretical calculations with the LNRp model are
indicated as empty rectangular boxes. The quoted errors represent only the statistical errors given by the
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Lattice QCD simulations
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qualitative behavior between our approach and wilson loop approach.
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Spin-dependent potentials 
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How to calculate ccbar potential？

✦Heavy quark mass introduces discretization errors of O((ma)n)
✓ At charm quark mass, it becomes severe: mc ~ 1.5 GeV and 1/a ~ 2 GeV, then mca ~O(1).

✦The Fermilab group proposed  relativistic heavy quark action (RHQ) 
approach where all O((ma)n) errors are removed by the appropriate 
choice of m0, ξ, rs, CB, CE .        A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, (1997)
 

We take the Tsukuba procedure in our study.
                             S. Aoki, Y. Kuramashi, and S.-i. Tominaga, Prog. Theor. Phys. 109, 383 (2003)

                          Y. Kayaba et al. [CP-PACS Collaboration], JHEP 0702, 019 (2007).
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Tuning RHQ parameters
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TABLE V: Summary of measured C2
eff values.

κval ν aMSAV C2
eff (4 mom) C2

eff (2 mom)

0.109600 1.05624 (1-loop) 1.306094e+00 ± 2.076639e-03 8.768864e-01 ± 5.782451e-02 8.919961e-01 ± 4.861433e-02

1.14505 1.337630e+00 ± 2.127586e-03 9.527982e-01 ± 6.470266e-02 9.694063e-01 ± 5.378453e-02

1.22300 1.366208e+00 ± 2.166408e-03 1.021053e+00 ± 7.101580e-02 1.039550e+00 ± 5.888536e-02

0.106720 1.06538 (1-loop) 1.409954e+00 ± 2.031051e-03 8.720647e-01 ± 5.687981e-02 8.878682e-01 ± 4.894972e-02

1.16000 1.441725e+00 ± 2.090614e-03 9.488925e-01 ± 6.422353e-02 9.663819e-01 ± 5.409060e-02

1.22300 1.463529e+00 ± 2.126736e-03 1.001604e+00 ± 6.917957e-02 1.020213e+00 ± 5.769120e-02

RHQ action (Tsukuba-type) has 5 parameters κc, ν, rs, cB, cE

  -  The parameters rS, cB and cE are determined by one-loop perturbation.
 -  For ν, we use a non-perturbatively determined value.
                     Dispersion relation: 
 -  κc is chosen to reproduce the experimental spin-averaged mass of  
    1S charmonium states Mexp = 3.0678(3) GeV.

E2(p2) = M2 + c2
e�|p|2

κc ν rs cB cE
0.10819 1.2153 1.2131 2.0268 1.7911

Effective speed of light: 
ceff2 = 1.04(5)

mave = 3.069(2) GeV, 
mhyp = 0.1110(17) GeV

cf. mhyp(exp) = 0.1165(12) GeV

 Y. Namekawa et al. [CP-PACS Collaboration],  arXiv:1104.4600
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Result; spin-independent ccbar potential 
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What does “quark mass” correspond to ?
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Spatial information = Temporal information
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Figure 5. Schematic figure of gauge-invariant smeared operator.

Figure (6) shows a potential obtained from the smeared NBS amplitude, V smr(r) (red

points for V channel and blue points for PS channel), and that obtained in Coulomb gauge,

V Coul.(r) (green points for V channel and blue points for PS channel). Note that the data

of V smr(r) are only calculated on the points with integral multiples of the lattice spacing a,

because !r in Eq. (B.1) is on-axis. V smr(r) shows the linear plus Coulomb behavior similar

to that in Coulomb gauge, and, more over, the two potentials almost coincide. This fact

shows that the gauge-invariant operator is also a suitable one for a constituent quark mass,

and the Coulomb-gauge operator used in the main part is similar to the gauge-invariant

operator of Eq. (B.1).
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Figure 6. Comparison of a potential with gauge-invariant smeared operator, V smr(r), to that
with Coulomb-gauge operator, V Coul.(r). The red (blue) points are the data with gauge -invariant
smeared operator in V (PS) channel, and the green (magenta) points are that in Coulomb gauge in
V (PS) channel. The two potentials almost coincides.
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